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ABSTRACT

Many detection algorithms in hyperspectral image analysis,
from well-characterized gaseous and solid targets to deliber-
ately uncharacterized anomalies and anomalous changes, de-
pend on accurately estimating the covariance matrix of the
background. In practice, the background covariance is es-
timated from samples in the image, and imprecision in this
estimate can lead to a loss of detection power.

In this paper, we describe the sparse matrix transform
(SMT) and investigate its utility for estimating the covariance
matrix from a limited number of samples. The SMT is formed
by a product of pairwise coordinate (Givens) rotations. Ex-
periments on hyperspectral data show that the estimate ac-
curately reproduces even small eigenvalues and eigenvectors.
In particular, we find that using the SMT to estimate the co-
variance matrix used in the adaptive matched filter leads to
consistently higher signal-to-clutter ratios.

Index Terms— covariance matrix, hyperspectral im-
agery, matched filter, signal detection, sparse matrix trans-
form

1. INTRODUCTION

The covariance matrix is the cornerstone of multivariate sta-
tistical analysis. From radar [1] and remote sensing [2] to
high finance [3], algorithms for the detection and analysis of
signals require the estimation of a covariance matrix, often
as a way to characterize the background clutter. For applica-
tions – such as hyperspectral imagery – where the covariance
matrix is large, the estimation of that matrix from a limited
number of samples is especially challenging.

The sample covariance is the most natural estimator, but
particularly when the number of samplesm (e.g.,number of
pixels) is not much larger than the dimensionp (e.g.,number
of spectral channels), this is not necessarily the best estimate.
Sliding window [4] and segmentation methods [5] are just two
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examples where only a small number of samples is available
for each covariance matrix that needs to be estimated. To mit-
igate the effect of undersampling, various kinds of regulariza-
tion have been proposed [6, 7, 8]. We will consider two re-
cently developed regularizing schemes for covariance matrix
estimation based on the sparse matrix transform (SMT) [9].

In Ref. [9], the effectiveness of the SMT estimator was
demonstrated in terms of eigenvalues and Kullback-Leibler
distances between Gaussian distributions based on true and
approximate covariance matrices. In this paper, we investi-
gate the performance of the adaptive matched filter, which
depends on a covariance matrix estimate, when different reg-
ularizers are used. This work extends previous work by others
investigating different approaches for regularizing the adap-
tive matched filter [4, 10, 11].

2. MAXIMUM LIKELIHOOD ESTIMATION

Given ap-dimensional Gaussian distribution with zero mean
and covariance matrixR ∈ R

p×p, the likelihood of ob-
serving m samples, organized into a data matrixX =
[x1x2 . . .xm] ∈ R

p×m, is given by

L(R;X) =
|R|−m/2

(2π)mp/2
exp

[

−
1

2
trace

(

XT R−1X
)

]

. (1)

If the covariance is decomposed as the productR = EΛET

whereE is the orthogonal eigenvector matrix andΛ is the
diagonal matrix of eigenvalues, then one can jointly maximize
the likelihood with respect toE andΛ, which results in the
maximum likelihood (ML) estimates [9]

Ê = arg minE∈Ω

{∣

∣diag(ET SE)
∣

∣

}

(2)

Λ̂ = diag
(

ÊT SE
)

, (3)

whereS =
〈

xxT
〉

= 1

mXXT is the sample covariance,

andΩ is the set of allowed orthogonal transforms. ThenR̂ =
ÊΛ̂ÊT is the ML estimate of the covariance.

Note that ifS has full rank andΩ is the set of all orthogo-
nal matrices, then the ML estimate of the covariance is given
by the sample covariance:̂R = S.



2.1. Sparse Matrix Transform (SMT)

The Sparse Matrix Transform (SMT) provides as way to reg-
ularize the estimate of the covariance matrix by restricting the
setΩ to a class of sparse eigenvector matricesE.

The most sparse nontrivial orthogonal transform is the
Givens rotation, which corresponds to a rotation by an an-
gle θ in the plane of thei andj axes; specifically, it is given
by E = I + Θ(i, j, θ) where

Θ(i, j, θ)mn =















cos(θ) − 1 if m = n = i or m = n = j
sin(θ) if m = i andn = j
− sin(θ) if m = j andn = i
0 otherwise.

(4)
Let Ek denote a Givens rotation, and note that a product

of orthogonal rotationsEkEk−1 · · ·E1 is still orthogonal. Let
ΩK be the set of orthogonal matrices that can be expressed
as a product ofK Givens rotations. The SMT covariance
estimate is then given by Eq. (2) withΩ = ΩK and Eq. (3).
(Actually, the effectiveΩ is more restrictive than this, since
we do not optimize overall possible products ofK rotations,
but instead greedily choose Givens rotations one at a time.)

3. MATCHED FILTER CRITERION

One practical use for a covariance estimate is the detectionof
signals using a matched filter. This detector depends on the
covariance matrix of the background data, and the better the
covariance is estimated, the more effective the detector.

A filter q ∈ R
p is a vector of coefficients which is applied

to an observationx to give a scalar valueqT x which is large
whenx contains signalt and is small otherwise. The signal-
to-clutter ratio for a filterq is given by

SCR=
(qT t)2

〈 (qT x)2 〉
=

(qT t)2

qT 〈xxT 〉q
=

(qT t)2

qT Rq
(5)

The matched filteris the vector that optimizes the SCR, and
it is given, up to a constant multiplier, byq = R−1t. Using
thisq in Eq. (5), we get the optimal SCR:

SCRo =
(tT R−1t)2

tT R−1RR−1t
= tT R−1t. (6)

If we approximate the matched filter using an approximate
covariance matrix̂R, thenq̂ = R̂−1t gives

SCR=
(tT R̂−1t)2

tT R̂−1RR̂−1t
(7)

and the SCRR is the ratio

SCR
SCRo

=
(tT R̂−1t)2

(tT R̂−1RR̂−1t)(tT R−1t)
. (8)

If R̂ = R, then SCRR= 1, but in general SCRR≤ 1.

4. NUMERICAL EXPERIMENTS

The analysis in this paper is based on two hyperspectral
datasets: one is a 224-channel AVIRIS image of the Florida
coastline that was used in Ref. [12] and one is a 191-channel
image of the Washington DC mall that was used in Ref. [2].
For the Florida image, we used all 75,000 of the pixels in the
image to estimate the “true” covariance; for the Washington
data, we limited ourselves to the 1224 pixels that were labeled
as “water.” We have performed comparisons with a number
of other data sets, and observed similar results.

We compare SMT and SMT-S to other regularization
schemes. Shrinkage estimators are a widely used class of es-
timators which regularize the covariance matrix by shrinking
it toward some target structures. Shrinkage estimators gener-
ally have the formR̂ = αD + (1 − α)S whereD is some
positive definite matrix. Two popular choices ofD are the
scaled identity matrix, trace(S)/p · I (called “Shrinkage-trI”
in the plots), and the diagonal entries ofS, diag(S) (called
“Shrinkage-D” in the plots), and the corresponding shrinkage
estimators are used for comparison in this paper. SMT-S is
the shrinkage estimator withD being the SMT estimate.

The parameterK required by SMT can be efficiently de-
termined by a simple cross-validation procedure. Specifically,
we partition the samples into three subsets, and chooseK to
maximize the average likelihood of the left-out subset given
the estimated covariance using the other two subsets. This
cross-validation requires little additional computationsince
every Ek is a sparse operator. As the number of samples
grows (i.e., m ≈ 10p), the optimalK for SMT can be very
large. In experiments, we consideredK up top(p − 1)/2.

For SMT-S, we found that we could more agressively
limit the number of Givens rotations (we usedK ≤ 10p) and
still obtain effective performance by choosing the shrinkage
coefficientα to maximize the cross-validated likelihood.

In Fig. 1, the performance of different covariance estima-
tors is compared using the SCRR statistic. In Fig. 1(a,b,d,e),
we see that SMT and the SMT-S algorithms outperformed the
other regularization schemes over a range of values ofm, with
the most dramatic improvement at the smallest sample sizes.
This behavior wasnot seen in Fig. 1(c,f), however, and we
discuss this in the following section.

4.1. Structure in the covariance matrix

It is widely appreciated that real hyperspectral data is notfully
modeled by a multivariate Gaussian distribution [13, 14]. But
in addition to this structurebeyondthe Gaussian, there also
appears to be structurewithin the covariance matrix.

We hypothesize that this structure is exploited by SMT
and that that explains how SMT can outperform the other
regularizers. We tested this hypothesis by randomly rotating
the covariance matrices. A random orthogonal matrixQ (ob-
tained from a QR decomposition of a matrix whose elements
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Fig. 1. Average of SCRR as a function of sample size for (a,b,c) Florida image and (d,e,f) Washington image. In all cases, the
target signals are randomly generated from a Gaussian distribution, and the error bars are based on runs with 30 trials. (a,d)
Gaussian samples are generated from the “true” covariance matrices for these two images. (b,e) Non-Gaussian samples are
drawn at random with replacement from the image data itself.(c,f) Gaussian samples generated from randomly rotated covari-
ance matrices. All plots are based on 30 trials, and each trial used a different rotation (for the randomly rotated covariances)
and a different targett.

were independently chosen from a Gaussian distribution) was
used to rotate the matrices: that is,R′ = QRQT . Fig. 1(c,f)
shows the performance of different covariance estimators ap-
plied to randomly rotated covariance matrices. Indeed, these
panels show that the rotationally invariant Shrinkage-trIis
the estimator with the best performance.

The performance of the sample covariance was similar for
all of these cases. This is consistent with the theoretical result,
due to Reedet al. [1], that for m ≫ p, the expected value
of SCRR is given by1 − p/m. (For m < p, the sample
covariance is singular and the matched filter is undefined.)

One appeal of algorithms based on the covariance matrix
is that they are often rotationally invariant. If we rotate our
datax via some linear transform̂x = Lx, then the analysis
on x̂ uses a different covariance matrix̂R = LRLT , but ro-
tationally invariant algorithms will detect signal at the same
pixels and achieve the same performance.

Rotationally invariant algorithms are attractive, but there
are properties of the data which are manifestly not rotation-
ally invariant. For instance, radiance or reflectance is always
non-negative but arbitrary linear combinations can produce
negative values. This is not a “problem” in the sense that the

algorithms which exploit this data do not require non-negative
values; but it does point to unexploited structure in the data.

This structure can be illustrated by considering the co-
variance matrixR from a hyperspectral image. We can ex-
press this matrix in terms of a product of eigenvectors and
eigenvalues,R = EΛET , and then observe an image of the
eigenvector matrixE. Fig. 2 illustrates such images, based
on the Florida data and on the Washington data. We see
that the eigenvector images, in Fig. 2(b,f) are sparse, par-
ticularly compared to their randomly rotated counterpartsin
Fig. 2(c,g). The histograms in Fig. 2(d,h), with their sharp
peaks at zero, further emphasize this sparsity.
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Fig. 2. Non-rotationally-invariant structure in the covariancematrix of real hyperspectral data is evident in the image of
eigenvectors for (a,b,c,d) Florida data and for (e,f,g,h) Washington data. In (a,e) the covariance matrix is shown withlarger
values ofRij plotted darker; in (b,f) the matrixE of eigenvectors ofR is shown with larger values of the absolute value
|Eij | shown darker; in (c,g) the eigenvectors are shown for a randomly rotated covariance matrix; and in (d,h) a histogram of
eigenvector values is shown for both the original and the randomly rotated covariance matrix.
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